home *** CD-ROM | disk | FTP | other *** search
- /* expr.c -operands, expressions-
- Copyright (C) 1987, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
-
- This file is part of GAS, the GNU Assembler.
-
- GAS is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GAS is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GAS; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /*
- * This is really a branch office of as-read.c. I split it out to clearly
- * distinguish the world of expressions from the world of statements.
- * (It also gives smaller files to re-compile.)
- * Here, "operand"s are of expressions, not instructions.
- */
-
- #include <ctype.h>
- #include <string.h>
-
- #include "as.h"
-
- #include "obstack.h"
-
- static void clean_up_expression PARAMS ((expressionS * expressionP));
- extern const char EXP_CHARS[], FLT_CHARS[];
-
- /*
- * Build any floating-point literal here.
- * Also build any bignum literal here.
- */
-
- /* Seems atof_machine can backscan through generic_bignum and hit whatever
- happens to be loaded before it in memory. And its way too complicated
- for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
- and never write into the early words, thus they'll always be zero.
- I hate Dean's floating-point code. Bleh. */
- LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
- FLONUM_TYPE generic_floating_point_number =
- {
- &generic_bignum[6], /* low (JF: Was 0) */
- &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high JF: (added +6) */
- 0, /* leader */
- 0, /* exponent */
- 0 /* sign */
- };
- /* If nonzero, we've been asked to assemble nan, +inf or -inf */
- int generic_floating_point_magic;
-
- floating_constant (expressionP)
- expressionS *expressionP;
- {
- /* input_line_pointer->*/
- /* floating-point constant. */
- int error_code;
-
- error_code = atof_generic
- (&input_line_pointer, ".", EXP_CHARS,
- &generic_floating_point_number);
-
- if (error_code)
- {
- if (error_code == ERROR_EXPONENT_OVERFLOW)
- {
- as_bad ("bad floating-point constant: exponent overflow, probably assembling junk");
- }
- else
- {
- as_bad ("bad floating-point constant: unknown error code=%d.", error_code);
- }
- }
- expressionP->X_seg = big_section;
- /* input_line_pointer->just after constant, */
- /* which may point to whitespace. */
- expressionP->X_add_number = -1;
- }
-
-
-
- integer_constant (radix, expressionP)
- int radix;
- expressionS *expressionP;
- {
- register char *digit_2; /*->2nd digit of number. */
- char c;
-
- register valueT number; /* offset or (absolute) value */
- register short int digit; /* value of next digit in current radix */
- register short int maxdig = 0;/* highest permitted digit value. */
- register int too_many_digits = 0; /* if we see >= this number of */
- register char *name; /* points to name of symbol */
- register symbolS *symbolP; /* points to symbol */
-
- int small; /* true if fits in 32 bits. */
- extern const char hex_value[]; /* in hex_value.c */
-
- /* may be bignum, or may fit in 32 bits. */
- /*
- * most numbers fit into 32 bits, and we want this case to be fast.
- * so we pretend it will fit into 32 bits. if, after making up a 32
- * bit number, we realise that we have scanned more digits than
- * comfortably fit into 32 bits, we re-scan the digits coding
- * them into a bignum. for decimal and octal numbers we are conservative: some
- * numbers may be assumed bignums when in fact they do fit into 32 bits.
- * numbers of any radix can have excess leading zeros: we strive
- * to recognise this and cast them back into 32 bits.
- * we must check that the bignum really is more than 32
- * bits, and change it back to a 32-bit number if it fits.
- * the number we are looking for is expected to be positive, but
- * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
- * number. the cavalier approach is for speed in ordinary cases.
- */
-
- switch (radix)
- {
-
- case 2:
- maxdig = 2;
- too_many_digits = 33;
- break;
- case 8:
- maxdig = radix = 8;
- too_many_digits = 11;
- break;
- case 16:
-
-
- maxdig = radix = 16;
- too_many_digits = 9;
- break;
- case 10:
- maxdig = radix = 10;
- too_many_digits = 11;
- }
- c = *input_line_pointer;
- input_line_pointer++;
- digit_2 = input_line_pointer;
- for (number = 0; (digit = hex_value[c]) < maxdig; c = *input_line_pointer++)
- {
- number = number * radix + digit;
- }
- /* c contains character after number. */
- /* input_line_pointer->char after c. */
- small = input_line_pointer - digit_2 < too_many_digits;
- if (!small)
- {
- /*
- * we saw a lot of digits. manufacture a bignum the hard way.
- */
- LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
- LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
- long carry;
-
- leader = generic_bignum;
- generic_bignum[0] = 0;
- generic_bignum[1] = 0;
- /* we could just use digit_2, but lets be mnemonic. */
- input_line_pointer = --digit_2; /*->1st digit. */
- c = *input_line_pointer++;
- for (; (carry = hex_value[c]) < maxdig; c = *input_line_pointer++)
- {
- for (pointer = generic_bignum;
- pointer <= leader;
- pointer++)
- {
- long work;
-
- work = carry + radix * *pointer;
- *pointer = work & LITTLENUM_MASK;
- carry = work >> LITTLENUM_NUMBER_OF_BITS;
- }
- if (carry)
- {
- if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
- { /* room to grow a longer bignum. */
- *++leader = carry;
- }
- }
- }
- /* again, c is char after number, */
- /* input_line_pointer->after c. */
- know (sizeof (int) * 8 == 32);
- know (LITTLENUM_NUMBER_OF_BITS == 16);
- /* hence the constant "2" in the next line. */
- if (leader < generic_bignum + 2)
- { /* will fit into 32 bits. */
- number =
- ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
- | (generic_bignum[0] & LITTLENUM_MASK);
- small = 1;
- }
- else
- {
- number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
- }
- }
- if (small)
- {
- /*
- * here with number, in correct radix. c is the next char.
- * note that unlike un*x, we allow "011f" "0x9f" to
- * both mean the same as the (conventional) "9f". this is simply easier
- * than checking for strict canonical form. syntax sux!
- */
-
- switch (c)
- {
-
- #ifdef LOCAL_LABELS_FB
- case 'b':
- {
- /*
- * backward ref to local label.
- * because it is backward, expect it to be defined.
- */
- /* Construct a local label. */
- name = fb_label_name ((int) number, 0);
-
- /* seen before, or symbol is defined: ok */
- symbolP = symbol_find (name);
- if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
- {
-
- /* local labels are never absolute. don't waste time
- checking absoluteness. */
- know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
-
- expressionP->X_add_symbol = symbolP;
- expressionP->X_seg = S_GET_SEGMENT (symbolP);
-
- }
- else
- { /* either not seen or not defined. */
- as_bad ("backw. ref to unknown label \"%d:\", 0 assumed.", number);
- expressionP->X_seg = absolute_section;
- }
-
- expressionP->X_add_number = 0;
- break;
- } /* case 'b' */
-
- case 'f':
- {
- /*
- * forward reference. expect symbol to be undefined or
- * unknown. undefined: seen it before. unknown: never seen
- * it before.
- * construct a local label name, then an undefined symbol.
- * don't create a xseg frag for it: caller may do that.
- * just return it as never seen before.
- */
- name = fb_label_name ((int) number, 1);
- symbolP = symbol_find_or_make (name);
- /* we have no need to check symbol properties. */
- #ifndef many_segments
- /* since "know" puts its arg into a "string", we
- can't have newlines in the argument. */
- know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
- #endif
- expressionP->X_add_symbol = symbolP;
- expressionP->X_seg = undefined_section;
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_number = 0;
-
- break;
- } /* case 'f' */
-
- #endif /* LOCAL_LABELS_FB */
-
- #ifdef LOCAL_LABELS_DOLLAR
-
- case '$':
- {
-
- /* If the dollar label is *currently* defined, then this is just
- another reference to it. If it is not *currently* defined,
- then this is a fresh instantiation of that number, so create
- it. */
-
- if (dollar_label_defined (number))
- {
- name = dollar_label_name (number, 0);
- symbolP = symbol_find (name);
- know (symbolP != NULL);
- }
- else
- {
- name = dollar_label_name (number, 1);
- symbolP = symbol_find_or_make (name);
- }
-
- expressionP->X_add_symbol = symbolP;
- expressionP->X_add_number = 0;
- expressionP->X_seg = S_GET_SEGMENT (symbolP);
-
- break;
- } /* case '$' */
-
- #endif /* LOCAL_LABELS_DOLLAR */
-
- default:
- {
- expressionP->X_add_number = number;
- expressionP->X_seg = absolute_section;
- input_line_pointer--; /* restore following character. */
- break;
- } /* really just a number */
-
- } /* switch on char following the number */
-
-
- }
- else
- { /* not a small number */
- expressionP->X_add_number = number;
- expressionP->X_seg = big_section;
- input_line_pointer--; /*->char following number. */
- } /* if (small) */
- } /* integer_constant() */
-
-
- /*
- * Summary of operand().
- *
- * in: Input_line_pointer points to 1st char of operand, which may
- * be a space.
- *
- * out: A expressionS. X_seg determines how to understand the rest of the
- * expressionS.
- * The operand may have been empty: in this case X_seg == SEG_ABSENT.
- * Input_line_pointer->(next non-blank) char after operand.
- *
- */
-
-
-
- static segT
- operand (expressionP)
- register expressionS *expressionP;
- {
- register char c;
- register symbolS *symbolP; /* points to symbol */
- register char *name; /* points to name of symbol */
- /* invented for humans only, hope */
- /* optimising compiler flushes it! */
- register short int radix; /* 2, 8, 10 or 16, 0 when floating */
- /* 0 means we saw start of a floating- */
- /* point constant. */
-
- /* digits, assume it is a bignum. */
-
- SKIP_WHITESPACE (); /* leading whitespace is part of operand. */
- c = *input_line_pointer++; /* input_line_pointer->past char in c. */
-
- switch (c)
- {
- #ifdef MRI
- case '%':
- integer_constant (2, expressionP);
- break;
- case '@':
- integer_constant (8, expressionP);
- break;
- case '$':
- integer_constant (16, expressionP);
- break;
- #endif
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- input_line_pointer--;
-
- integer_constant (10, expressionP);
- break;
-
- case '0':
- /* non-decimal radix */
-
-
- c = *input_line_pointer;
- switch (c)
- {
-
- default:
- if (c && strchr (FLT_CHARS, c))
- {
- input_line_pointer++;
- floating_constant (expressionP);
- }
- else
- {
- /* The string was only zero */
- expressionP->X_add_symbol = 0;
- expressionP->X_add_number = 0;
- expressionP->X_seg = absolute_section;
- }
-
- break;
-
- case 'x':
- case 'X':
- input_line_pointer++;
- integer_constant (16, expressionP);
- break;
-
- case 'b':
- #ifdef LOCAL_LABELS_FB
- if (!*input_line_pointer
- || (!strchr ("+-.0123456789", *input_line_pointer)
- && !strchr (EXP_CHARS, *input_line_pointer)))
- {
- input_line_pointer--;
- integer_constant (10, expressionP);
- break;
- }
- #endif
- case 'B':
- input_line_pointer++;
- integer_constant (2, expressionP);
- break;
-
- case '0':
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- integer_constant (8, expressionP);
- break;
-
- case 'f':
- #ifdef LOCAL_LABELS_FB
- /* if it says '0f' and the line ends or it doesn't look like
- a floating point #, its a local label ref. dtrt */
- /* likewise for the b's. xoxorich. */
- if (c == 'f'
- && (!*input_line_pointer ||
- (!strchr ("+-.0123456789", *input_line_pointer) &&
- !strchr (EXP_CHARS, *input_line_pointer))))
- {
- input_line_pointer -= 1;
- integer_constant (10, expressionP);
- break;
- }
- #endif
-
- case 'd':
- case 'D':
- case 'F':
- case 'r':
- case 'e':
- case 'E':
- case 'g':
- case 'G':
-
- input_line_pointer++;
- floating_constant (expressionP);
- expressionP->X_add_number = -(isupper (c) ? tolower (c) : c);
- break;
-
- #ifdef LOCAL_LABELS_DOLLAR
- case '$':
- integer_constant (10, expressionP);
- break;
- #endif
- }
-
- break;
- case '(':
- /* didn't begin with digit & not a name */
- {
- (void) expression (expressionP);
- /* Expression() will pass trailing whitespace */
- if (*input_line_pointer++ != ')')
- {
- as_bad ("Missing ')' assumed");
- input_line_pointer--;
- }
- /* here with input_line_pointer->char after "(...)" */
- }
- return expressionP->X_seg;
-
-
- case '\'':
- /* Warning: to conform to other people's assemblers NO ESCAPEMENT is
- permitted for a single quote. The next character, parity errors and
- all, is taken as the value of the operand. VERY KINKY. */
- expressionP->X_add_number = *input_line_pointer++;
- expressionP->X_seg = absolute_section;
- break;
-
- case '+':
- operand (expressionP);
- break;
-
- case '~':
- case '-':
- {
- /* unary operator: hope for SEG_ABSOLUTE */
- segT opseg = operand (expressionP);
- if (opseg == absolute_section)
- {
- /* input_line_pointer -> char after operand */
- if (c == '-')
- {
- expressionP->X_add_number = -expressionP->X_add_number;
- /* Notice: '-' may overflow: no warning is given. This is
- compatible with other people's assemblers. Sigh. */
- }
- else
- {
- expressionP->X_add_number = ~expressionP->X_add_number;
- }
- }
- else if (opseg == text_section
- || opseg == data_section
- || opseg == bss_section
- || opseg == pass1_section
- || opseg == undefined_section)
- {
- if (c == '-')
- {
- expressionP->X_subtract_symbol = expressionP->X_add_symbol;
- expressionP->X_add_symbol = 0;
- expressionP->X_seg = diff_section;
- }
- else
- as_warn ("Unary operator %c ignored because bad operand follows",
- c);
- }
- else
- as_warn ("Unary operator %c ignored because bad operand follows", c);
- }
- break;
-
- case '.':
- if (!is_part_of_name (*input_line_pointer))
- {
- char *fake;
- extern struct obstack frags;
-
- /* JF: '.' is pseudo symbol with value of current location
- in current segment. */
- #ifdef DOT_LABEL_PREFIX
- fake = ".L0\001";
- #else
- fake = "L0\001";
- #endif
- symbolP = symbol_new (fake,
- now_seg,
- (valueT) (obstack_next_free (&frags) - frag_now->fr_literal),
- frag_now);
-
- expressionP->X_add_number = 0;
- expressionP->X_add_symbol = symbolP;
- expressionP->X_seg = now_seg;
- break;
-
- }
- else
- {
- goto isname;
-
-
- }
- case ',':
- case '\n':
- case '\0':
- eol:
- /* can't imagine any other kind of operand */
- expressionP->X_seg = absent_section;
- input_line_pointer--;
- md_operand (expressionP);
- break;
-
- default:
- if (is_end_of_line[c])
- goto eol;
- if (is_name_beginner (c)) /* here if did not begin with a digit */
- {
- /*
- * Identifier begins here.
- * This is kludged for speed, so code is repeated.
- */
- isname:
- name = --input_line_pointer;
- c = get_symbol_end ();
- symbolP = symbol_find_or_make (name);
- /* If we have an absolute symbol or a reg, then we know its value
- now. */
- expressionP->X_seg = S_GET_SEGMENT (symbolP);
- if (expressionP->X_seg == absolute_section
- || expressionP->X_seg == reg_section)
- expressionP->X_add_number = S_GET_VALUE (symbolP);
- else
- {
- expressionP->X_add_number = 0;
- expressionP->X_add_symbol = symbolP;
- }
- *input_line_pointer = c;
- expressionP->X_subtract_symbol = NULL;
- }
- else
- {
- as_bad ("Bad expression");
- expressionP->X_add_number = 0;
- expressionP->X_seg = absolute_section;
- }
- }
-
- /*
- * It is more 'efficient' to clean up the expressionS when they are created.
- * Doing it here saves lines of code.
- */
- clean_up_expression (expressionP);
- SKIP_WHITESPACE (); /*->1st char after operand. */
- know (*input_line_pointer != ' ');
- return (expressionP->X_seg);
- } /* operand() */
-
-
- /* Internal. Simplify a struct expression for use by expr() */
-
- /*
- * In: address of a expressionS.
- * The X_seg field of the expressionS may only take certain values.
- * Now, we permit SEG_PASS1 to make code smaller & faster.
- * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
- * Out: expressionS may have been modified:
- * 'foo-foo' symbol references cancelled to 0,
- * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
- * Unused fields zeroed to help expr().
- */
-
- static void
- clean_up_expression (expressionP)
- register expressionS *expressionP;
- {
- segT s = expressionP->X_seg;
- if (s == absent_section
- || s == pass1_section)
- {
- expressionP->X_add_symbol = NULL;
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_number = 0;
- }
- else if (s == big_section
- || s == absolute_section)
- {
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_symbol = NULL;
- }
- else if (s == undefined_section)
- expressionP->X_subtract_symbol = NULL;
- else if (s == diff_section)
- {
- /*
- * It does not hurt to 'cancel' NULL==NULL
- * when comparing symbols for 'eq'ness.
- * It is faster to re-cancel them to NULL
- * than to check for this special case.
- */
- if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
- || (expressionP->X_subtract_symbol
- && expressionP->X_add_symbol
- && (expressionP->X_subtract_symbol->sy_frag
- == expressionP->X_add_symbol->sy_frag)
- && (S_GET_VALUE (expressionP->X_subtract_symbol)
- == S_GET_VALUE (expressionP->X_add_symbol))))
- {
- expressionP->X_subtract_symbol = NULL;
- expressionP->X_add_symbol = NULL;
- expressionP->X_seg = absolute_section;
- }
- }
- else if (s == reg_section)
- {
- expressionP->X_add_symbol = NULL;
- expressionP->X_subtract_symbol = NULL;
- }
- else
- {
- if (SEG_NORMAL (expressionP->X_seg))
- {
- expressionP->X_subtract_symbol = NULL;
- }
- else
- {
- BAD_CASE (expressionP->X_seg);
- }
- }
- }
-
- /*
- * expr_part ()
- *
- * Internal. Made a function because this code is used in 2 places.
- * Generate error or correct X_?????_symbol of expressionS.
- */
-
- /*
- * symbol_1 += symbol_2 ... well ... sort of.
- */
-
- static segT
- expr_part (symbol_1_PP, symbol_2_P)
- symbolS **symbol_1_PP;
- symbolS *symbol_2_P;
- {
- segT return_value;
- #ifndef MANY_SEGMENTS
- #ifndef OBJ_ECOFF
- int test = ((*symbol_1_PP) == NULL
- || (S_GET_SEGMENT (*symbol_1_PP) == text_section)
- || (S_GET_SEGMENT (*symbol_1_PP) == data_section)
- || (S_GET_SEGMENT (*symbol_1_PP) == bss_section)
- || (!S_IS_DEFINED (*symbol_1_PP)));
- assert (test);
- test = (symbol_2_P == NULL
- || (S_GET_SEGMENT (symbol_2_P) == text_section)
- || (S_GET_SEGMENT (symbol_2_P) == data_section)
- || (S_GET_SEGMENT (symbol_2_P) == bss_section)
- || (!S_IS_DEFINED (symbol_2_P)));
- assert (test);
- #endif
- #endif
- if (*symbol_1_PP)
- {
- if (!S_IS_DEFINED (*symbol_1_PP))
- {
- if (symbol_2_P)
- {
- return_value = pass1_section;
- *symbol_1_PP = NULL;
- }
- else
- {
- know (!S_IS_DEFINED (*symbol_1_PP));
- return_value = undefined_section;
- }
- }
- else
- {
- if (symbol_2_P)
- {
- if (!S_IS_DEFINED (symbol_2_P))
- {
- *symbol_1_PP = NULL;
- return_value = pass1_section;
- }
- else
- {
- /* {seg1} - {seg2} */
- as_bad ("Expression too complex, 2 symbolS forgotten: \"%s\" \"%s\"",
- S_GET_NAME (*symbol_1_PP), S_GET_NAME (symbol_2_P));
- *symbol_1_PP = NULL;
- return_value = absolute_section;
- }
- }
- else
- {
- return_value = S_GET_SEGMENT (*symbol_1_PP);
- }
- }
- }
- else
- { /* (* symbol_1_PP) == NULL */
- if (symbol_2_P)
- {
- *symbol_1_PP = symbol_2_P;
- return_value = S_GET_SEGMENT (symbol_2_P);
- }
- else
- {
- *symbol_1_PP = NULL;
- return_value = absolute_section;
- }
- }
- #ifndef MANY_SEGMENTS
- #ifndef OBJ_ECOFF
- test = (return_value == absolute_section
- || return_value == text_section
- || return_value == data_section
- || return_value == bss_section
- || return_value == undefined_section
- || return_value == pass1_section);
- assert (test);
- #endif
- #endif
- know ((*symbol_1_PP) == NULL
- || (S_GET_SEGMENT (*symbol_1_PP) == return_value));
- return (return_value);
- }
-
- /* Expression parser. */
-
- /*
- * We allow an empty expression, and just assume (absolute,0) silently.
- * Unary operators and parenthetical expressions are treated as operands.
- * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
- *
- * We used to do a aho/ullman shift-reduce parser, but the logic got so
- * warped that I flushed it and wrote a recursive-descent parser instead.
- * Now things are stable, would anybody like to write a fast parser?
- * Most expressions are either register (which does not even reach here)
- * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
- * So I guess it doesn't really matter how inefficient more complex expressions
- * are parsed.
- *
- * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
- * Also, we have consumed any leading or trailing spaces (operand does that)
- * and done all intervening operators.
- */
-
- typedef enum
- {
- O_illegal, /* (0) what we get for illegal op */
-
- O_multiply, /* (1) * */
- O_divide, /* (2) / */
- O_modulus, /* (3) % */
- O_left_shift, /* (4) < */
- O_right_shift, /* (5) > */
- O_bit_inclusive_or, /* (6) | */
- O_bit_or_not, /* (7) ! */
- O_bit_exclusive_or, /* (8) ^ */
- O_bit_and, /* (9) & */
- O_add, /* (10) + */
- O_subtract /* (11) - */
- }
-
- operatorT;
-
- #define __ O_illegal
-
- static const operatorT op_encoding[256] =
- { /* maps ASCII->operators */
-
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
-
- __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
- __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
- __, __, __, __, __, __, __, __,
- __, __, __, __, O_left_shift, __, O_right_shift, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, O_bit_exclusive_or, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __,
- __, __, __, __, O_bit_inclusive_or, __, __, __,
-
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
- __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
- };
-
-
- /*
- * Rank Examples
- * 0 operand, (expression)
- * 1 + -
- * 2 & ^ ! |
- * 3 * / % << >>
- */
- static const operator_rankT
- op_rank[] =
- {0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1};
-
- /* Return resultP->X_seg. */
- segT
- expr (rank, resultP)
- register operator_rankT rank; /* Larger # is higher rank. */
- register expressionS *resultP; /* Deliver result here. */
- {
- expressionS right;
- register operatorT op_left;
- register char c_left; /* 1st operator character. */
- register operatorT op_right;
- register char c_right;
-
- know (rank >= 0);
- (void) operand (resultP);
- know (*input_line_pointer != ' '); /* Operand() gobbles spaces. */
- c_left = *input_line_pointer; /* Potential operator character. */
- op_left = op_encoding[c_left];
- while (op_left != O_illegal && op_rank[(int) op_left] > rank)
- {
- input_line_pointer++; /*->after 1st character of operator. */
- /* Operators "<<" and ">>" have 2 characters. */
- if (*input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
- {
- input_line_pointer++;
- } /*->after operator. */
- if (absent_section == expr (op_rank[(int) op_left], &right))
- {
- as_warn ("Missing operand value assumed absolute 0.");
- resultP->X_add_number = 0;
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
- resultP->X_seg = absolute_section;
- }
- know (*input_line_pointer != ' ');
- c_right = *input_line_pointer;
- op_right = op_encoding[c_right];
- if (*input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
- {
- input_line_pointer++;
- } /*->after operator. */
- know ((int) op_right == 0 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
- /* input_line_pointer->after right-hand quantity. */
- /* left-hand quantity in resultP */
- /* right-hand quantity in right. */
- /* operator in op_left. */
- if (resultP->X_seg == pass1_section || right.X_seg == pass1_section)
- {
- resultP->X_seg = pass1_section;
- }
- else
- {
- if (resultP->X_seg == big_section)
- {
- as_warn ("Left operand of %c is a %s. Integer 0 assumed.",
- c_left, resultP->X_add_number > 0 ? "bignum" : "float");
- resultP->X_seg = absolute_section;
- resultP->X_add_symbol = 0;
- resultP->X_subtract_symbol = 0;
- resultP->X_add_number = 0;
- }
- if (right.X_seg == big_section)
- {
- as_warn ("Right operand of %c is a %s. Integer 0 assumed.",
- c_left, right.X_add_number > 0 ? "bignum" : "float");
- right.X_seg = absolute_section;
- right.X_add_symbol = 0;
- right.X_subtract_symbol = 0;
- right.X_add_number = 0;
- }
- if (op_left == O_subtract)
- {
- /*
- * Convert - into + by exchanging symbolS and negating number.
- * I know -infinity can't be negated in 2's complement:
- * but then it can't be subtracted either. This trick
- * does not cause any further inaccuracy.
- */
-
- register symbolS *symbolP;
-
- right.X_add_number = -right.X_add_number;
- symbolP = right.X_add_symbol;
- right.X_add_symbol = right.X_subtract_symbol;
- right.X_subtract_symbol = symbolP;
- if (symbolP)
- {
- right.X_seg = diff_section;
- }
- op_left = O_add;
- }
-
- if (op_left == O_add)
- {
- segT seg1;
- segT seg2;
- #ifndef MANY_SEGMENTS
- #ifndef OBJ_ECOFF
- know (resultP->X_seg == data_section || resultP->X_seg == text_section || resultP->X_seg == bss_section || resultP->X_seg == undefined_section || resultP->X_seg == diff_section || resultP->X_seg == absolute_section || resultP->X_seg == pass1_section || resultP->X_seg == reg_section);
-
- know (right.X_seg == data_section || right.X_seg == text_section || right.X_seg == bss_section || right.X_seg == undefined_section || right.X_seg == diff_section || right.X_seg == absolute_section || right.X_seg == pass1_section);
- #endif
- #endif
- clean_up_expression (&right);
- clean_up_expression (resultP);
-
- seg1 = expr_part (&resultP->X_add_symbol, right.X_add_symbol);
- seg2 = expr_part (&resultP->X_subtract_symbol, right.X_subtract_symbol);
- if (seg1 == pass1_section || seg2 == pass1_section)
- {
- need_pass_2 = 1;
- resultP->X_seg = pass1_section;
- }
- else if (seg2 == absolute_section)
- resultP->X_seg = seg1;
- else if (seg1 != undefined_section
- && seg1 != absolute_section
- && seg2 != undefined_section
- && seg1 != seg2)
- {
- know (seg2 != absolute_section);
- know (resultP->X_subtract_symbol);
- #ifndef MANY_SEGMENTS
- #ifndef OBJ_ECOFF
- know (seg1 == text_section || seg1 == data_section || seg1 == bss_section);
- know (seg2 == text_section || seg2 == data_section || seg2 == bss_section);
- #endif
- #endif
- know (resultP->X_add_symbol);
- know (resultP->X_subtract_symbol);
- as_bad ("Expression too complex: forgetting %s - %s",
- S_GET_NAME (resultP->X_add_symbol),
- S_GET_NAME (resultP->X_subtract_symbol));
- resultP->X_seg = absolute_section;
- /* Clean_up_expression() will do the rest. */
- }
- else
- resultP->X_seg = diff_section;
-
- resultP->X_add_number += right.X_add_number;
- clean_up_expression (resultP);
- }
- else
- { /* Not +. */
- if (resultP->X_seg == undefined_section || right.X_seg == undefined_section)
- {
- resultP->X_seg = pass1_section;
- need_pass_2 = 1;
- }
- else
- {
- resultP->X_subtract_symbol = NULL;
- resultP->X_add_symbol = NULL;
- /* Will be absolute_section. */
- if (resultP->X_seg != absolute_section || right.X_seg != absolute_section)
- {
- as_bad ("Relocation error. Absolute 0 assumed.");
- resultP->X_seg = absolute_section;
- resultP->X_add_number = 0;
- }
- else
- {
- switch (op_left)
- {
- case O_bit_inclusive_or:
- resultP->X_add_number |= right.X_add_number;
- break;
-
- case O_modulus:
- if (right.X_add_number)
- {
- resultP->X_add_number %= right.X_add_number;
- }
- else
- {
- as_warn ("Division by 0. 0 assumed.");
- resultP->X_add_number = 0;
- }
- break;
-
- case O_bit_and:
- resultP->X_add_number &= right.X_add_number;
- break;
-
- case O_multiply:
- resultP->X_add_number *= right.X_add_number;
- break;
-
- case O_divide:
- if (right.X_add_number)
- {
- resultP->X_add_number /= right.X_add_number;
- }
- else
- {
- as_warn ("Division by 0. 0 assumed.");
- resultP->X_add_number = 0;
- }
- break;
-
- case O_left_shift:
- resultP->X_add_number <<= right.X_add_number;
- break;
-
- case O_right_shift:
- resultP->X_add_number >>= right.X_add_number;
- break;
-
- case O_bit_exclusive_or:
- resultP->X_add_number ^= right.X_add_number;
- break;
-
- case O_bit_or_not:
- resultP->X_add_number |= ~right.X_add_number;
- break;
-
- default:
- BAD_CASE (op_left);
- break;
- } /* switch(operator) */
- }
- } /* If we have to force need_pass_2. */
- } /* If operator was +. */
- } /* If we didn't set need_pass_2. */
- op_left = op_right;
- } /* While next operator is >= this rank. */
- return (resultP->X_seg);
- }
-
- /*
- * get_symbol_end()
- *
- * This lives here because it belongs equally in expr.c & read.c.
- * Expr.c is just a branch office read.c anyway, and putting it
- * here lessens the crowd at read.c.
- *
- * Assume input_line_pointer is at start of symbol name.
- * Advance input_line_pointer past symbol name.
- * Turn that character into a '\0', returning its former value.
- * This allows a string compare (RMS wants symbol names to be strings)
- * of the symbol name.
- * There will always be a char following symbol name, because all good
- * lines end in end-of-line.
- */
- char
- get_symbol_end ()
- {
- register char c;
-
- while (is_part_of_name (c = *input_line_pointer++))
- ;
- *--input_line_pointer = 0;
- return (c);
- }
-
-
- unsigned int
- get_single_number ()
- {
- expressionS exp;
- operand (&exp);
- return exp.X_add_number;
-
- }
-
- /* end of expr.c */
-